

Epsom College Chemistry Department

Scholarship Paper

1 Hour

The paper is designed to be challenging and some parts may stretch slightly beyond application of GCSE knowledge.

- A calculator may be used
- A periodic table is provided at the back of the paper
- You have 1 hour to complete this paper
- The paper is challenging; answer as many questions as you can and do not worry if you can't do all the paper.

Q1.

1.12 g of iron reacts with oxygen to form 1.60 g of an oxide of iron. Use relative atomic masses: Fe = 56, O = 16.

What is the formula of this oxide of iron?

- A FeO5
- B Fe₂O₁₀
- C Fe₃O₂
- **D** Fe₂O₃

(Total for question = 1 mark)

Q2.

The systematic name of the compound shown above is

- A Butane.
- **B** Hexane.
- C Decane.
- **D** Heptane.

(Total for Question = 1 mark)

Q3.

One possible method for the formation of nitric acid involves the reaction between dinitrogen tetroxide and water.

 $3N_2O_4 + 2H_2O \rightarrow 4HNO_3 + 2NO$

Calculate the atom economy for the formation of nitric acid from this reaction. The atom economy is the mass of the useful products, divided by the mass of all products, multiplied by 100.

(1)

(2)

(Total for question = 1 mark)

Q4.

This question is about the structure of the atom and isotopes.

The following excerpt is taken from the book *Inorganic Chemistry* by Bailey and Snellgrove, fourth impression 1938.

"Some of the electrons are also contained in the nucleus, whilst the remainder are arranged in rings revolving round the nucleus The two isotopes [of chlorine] have therefore 18 and 20 electrons respectively in the nucleus and 17 [electrons] external to it."

(a) Identify and correct **two** errors in the excerpt.

(b) What is the structure of a 1+ ion of the carbon-13 isotope?
(1)
A six protons, six neutrons and five electrons
B six protons, seven neutrons and six electrons
C six protons, seven neutrons and five electrons
D seven protons, six neutrons and six electrons

Q5.

This question is about sodium sulfide.

- (a) Sulfur reacts with sodium to form the compound sodium sulfide, Na_2S .
 - (i) Draw a dot-and-cross diagram for sodium sulfide ; only the outer electrons need be shown. Include the charges present.

(2)

(Total for question = 5 marks)

	(ii)) Which statement about the electrical conductivity of sodium sulfide is correct?	(1)
ŝ.	A	A it conducts when solid and liquid	
Č.	E	3 it conducts when solid but not when liquid	
ŝ.	C	c it conducts when liquid but not when solid	
į.	C	D it does not conduct when solid or liquid	
	(iii bc I	i) The melting temperature of sodium sulfide is higher than that of sodium chloride, even though oth contain ionic bonding. Explain this difference in melting temperature.	(2)
	•••••		

.....

Q6.

Lithium reacts with water to produce hydrogen.

 $Li(s) + H_2O(I) \rightarrow LiOH(aq) + \frac{1}{2}H_2(g)$

(a) In an experiment, 0.069 g (0.01 mol) of lithium produced 90 cm³ of hydrogen at room temperature and pressure. What is the percentage yield of hydrogen?

[1 mol of any gas occupies 24 dm³ at room temperature and pressure.]

- 🖾 A 45%
- 🖾 **B** 60%
- C 75%
- 🖸 **D** 90%
- (b) Which of the following is **not** a possible reason for the yield being less than 100%?
- A Some oil remained on the surface of the lithium.
- **B** Hydrogen gas is very soluble in water.
- C A layer of oxide was present on the surface of the lithium.
- D Some of the hydrogen gas escaped collection.

(Total for question = 2 marks)

(1)

(1)

A student used the apparatus in the diagram to determine the molar volume of a gas.

The student used a piece of magnesium ribbon, which was about 5 cm in length, and the dilute hydrochloric acid was in excess. The experiment was repeated three times at 24°C and the following results were obtained.

	Experiment 1	Experiment 2	Experiment 3
Mass of magnesium / g	0.04	0.04	0.04
Volume of hydrogen gas / cm ³	31	25	32

The equation for the reaction is

$$Mg(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2(g)$$

(a) (i) Calculate the number of moles of magnesium used by the student in each experiment.

(1)

(ii) Use your answer from part (a)(i) to deduce the number of moles of hydrogen gas that should be produced.

(1)

Q7.

(iii) Calculate, using the Ideal Gas Equation, pV = nRT, the volume of hydrogen gas, in **cm**³, that should be produced in each of these experiments. In the equation V is in m³. 1m³ = 1,000,000cm³ [pV = nRT R = 8.31 J mol⁻¹ K⁻¹ $p = 101\ 000$ Pa]

(4)

(1)

(b) Give a reason why the student repeated the experiment three times.

.....

(Total for question = 7 marks)

Q8.

Propane is a saturated hydrocarbon with molecular formula C₃H₈.

*(a) Explain the meaning of the terms **saturated** and **hydrocarbon**.

Saturated

.....

Hydrocarbon

.....

(b) Propane is sold in small cylinders for use as a fuel in camping stoves. The enthalpy change of combustion of propane can be measured by experiment using one of these cylinders.

A known mass of propane is burned to heat a container of water, and the temperature rise of the water is measured.

The results of the experiment are shown below.

Mass of propane burned	0.33 g
Temperature of water at start	18.0 °C
Final temperature of water	45.1 ℃
Mass of water in container	100 g

(i) How would the mass of propane which was burned be measured?

.....

.....

(ii) Calculate the energy transferred in the experiment, using the results above and the following expression.

Energy transferred (J) = mass × specific heat capacity × temperature change The specific heat capacity of water is 4.18 J g^{-1} °C⁻¹.

(1)

(1)

(2)

(iii)	Calculate the enthalpy change of combustion of propane, ΔH_c , in kJ mol ⁻¹	
G	ive your answer to three significant figures and include a sign.	

(iv) The results of this experiment are inaccurate due to heat loss.
 Suggest **one** other source of error, other than measurement errors and limitations of the equipment.
 (1)

.....

(Total for question = 8 marks)

Q9.

This question is about the gas ethane, C_2H_6 , and its reactions.

(a) Write the equation, including state symbols, which represents the reaction taking place when one mole of ethane is burnt completely in oxygen.

(2)

(b) Ethane can react with chlorine to form chloroethane and hydrogen chloride. $C_2H_6(g) + CI_2(g) \rightarrow C_2H_5CI(g) + HCI(g)$

Bond	Bond enthalpy/kJ mol ⁻¹
C—H	413
C—C	347
C—CI	346
H—CI	432
CI—CI	243

Rewrite this equation using displayed formulae.

Use the equation you have written, together with the bond enthalpy data, to calculate the enthalpy change for the reaction.

(4)

Q10.

Crude oil is a complex mixture of hydrocarbons. Initial separation is achieved by fractional distillation of the crude oil. The separate fractions are further refined to produce hydrocarbons such as decane, C₁₀H₂₂.

(a) Give the general formula of alkanes.

(1)

(b) Carbon monoxide, CO, is formed during the incomplete combustion of decane.

(i) Write an equation for the incomplete combustion of decane, forming carbon monoxide and water only.

(1)

(1)

(ii) Explain why incomplete combustion can occur.

(c) 'Low-sulfur fuel' is now supplied to petrol stations. The removal of sulfur from diesel and petrol reduces the emission of toxic oxides of sulfur from vehicle exhausts. One such oxide is sulfur dioxide, SO₂.

The bonding in sulfur dioxide may be represented as shown below.

$$\mathsf{O}=\mathsf{S}\to\mathsf{O}$$

Complete the dot and cross diagram below for the SO₂ molecule, showing only outer shell electrons. Use dots to represent the oxygen electrons and crosses to represent the sulfur electrons.

(d) Another alkane produced from crude oil is heptane, C_7H_{16} . The reforming of heptane produces methylcyclohexane and only one other product. A methylcyclohexane molecule is made from a ring of six carbon atoms bonded to a methyl group.

(i) Use the information given above to give the **structure** of methylcyclohexane.

(3)

(e) Five branched-chain isomers of heptane are shown in the boxes below.

2-methylhexane	2,3-dimethylpentane
2,2,3-trimethylbutane	2,4-dimethylpentane
ison	ner A

⁽i) Give the systematic name of isomer $\boldsymbol{\mathsf{A}}.$

(1)

(ii) In the empty boxes above, draw skeletal formulae for two other **branched-chain** isomers of C_7H_{16} , with no side-chain having more than one carbon atom.

(2) (Total for question = 10 marks)

Q11.

Alkenes are unsaturated hydrocarbons. They are used in the industrial production of many organic compounds.

(a) Add structural formulae to the flowchart below to show the organic product formed in each addition reaction of 2-methylpropene.

(4)

mixture of isomers

(c) Ethene, C_2H_4 , was prepared from ethanol, C_2H_5OH , by the following reaction

$$C_2H_5OH \rightarrow C_2H_4 + H_2O$$

A chemist reacted 9.2 g of ethanol, C_2H_5OH , and obtained 4.2 g of ethene.

Calculate the percentage yield of ethene in the reaction.

(2)

(Total for Question = 6 marks)

• Lanti	[223] Fr francium 87	132.9 Cs caeslum 55	85.5 Rb rubidium 37	39.1 K potassium 19	6.9 Li Ulthium 3 23.0 23.0 Na sodium 11	1
ide series	[226] Ra radium 88	137.3 Ba barlum 56	87.6 Sr strontium 38	40.1 Ca calcium 20	9.0 Be beryllium 4 24.3 Mg magnesium 12	2 (2)
¢.	[227] Ac* actinium 89	138.9 La* lanthanum 57	88.9 Y yttrium 39	45.0 Sc scandium 21	(3)	
140 Ce cerium 58 78 78 71 Th thorium 90	[261] Rf rutherfordium 104	178.5 Hf hafnium 72	91.2 Zr zirconium 40	47.9 Ti titanium 22	relati ato (4)	
141 Pr praseodymlum 59 [231] Pa protactinium 91	[262] Db dubníum 105	180.9 Ta tantalum 73	92.9 Nb niobium 41	50.9 V vanadium 23	ve atomic mare (proton) n (5)	Key
144 Nd 60 238 U 92	[266] Sg seaborgium 106	183.8 W tungsten 74	95.9 Mo molybdenum 42	52.0 Cr chromium 24	(6) mass	Ę
[147] Pm promethium 61 [237] Np neptunium 93	[264] Bh bohrium 107	186.2 Re rhenium 75	[98] Tc technetium 43	54.9 Mn manganese 25	3	ле Ре
150 Sm samarium 62 [242] Pu plutonium 94	[277] Hs hassium 108	190.2 Os osmium 76	101.1 Ru ruthenium 44	55.8 Fe ^{tiron} 26	(8)	1.0 H H hydrogen 1
152 Eu europium 63 [243] Am americium 95	[268] Mt meitnerium 109	192.2 Ir iridium 77	102.9 Rh rhodium 45	58.9 Co cobalt 27	(9)	c Tab
157 Gd gadolinium 64 [247] Cm curium 96	[271] Ds damstadtium 110	195.1 Pt platinum 78	106.4 Pd palladium 46	58.7 Ni nickel 28	(10)	le of
159 Tb terbium 65 [245] Bk berkelium 97	[272] Rg roentgenium 111	197.0 Au gold 79	107.9 Ag silver 47	63.5 Cu copper 29	(11)	Elem
163 Dy dysprosium 66 [251] Cf caltfornium 98	Elen	200.6 Hg mercury 80	112.4 Cd cadmium 48	65.4 Zn 30	(12)	ents
165 Ho holmium 67 [254] Es einsteinium 99	nents with	204.4 Tl thallium 81	114.8 In indium 49	69.7 Ga gallium 31	10.8 B boron 5 27.0 Al aluminium 13	3
167 Er erbium 68 [253] Fm fermium 100	atomic nu but not f	207.2 Pb lead 82	118.7 Sn tin 50	72.6 Ge germanium 32	12.0 C carbon 6 28.1 Sil silicon 14	4 (14)
169 Tm thullium 69 [256] Md 101	mbers 112- ully auther	209.0 Bi bismuth 83	121.8 Sb antimony 51	74.9 As arsenic 33	14.0 N nitrogen 7 31.0 P phosphorus 15	5 (15)
173 Yb ytterbium 70 [254] No 102	116 have I nticated	[209] Po polonium 84	127.6 Te tellurium 52	79.0 Se selenium 34	16.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 (16)
175 Lu Uutetium 71 [257] Lr Iawrencium 103	veen repor	[210] At astatine 85	126.9 I iodine 53	79.9 Br bromine 35	19.0 F fluorine 9 35.5 Cl chlorine 17	7
	ted	[222] Rn radon 86	131.3 Xe xenon 54	83.8 Kr krypton 36	20.2 Ne neon 10 39.9 39.9 Ar argon 18	0 (8) (18) 4.0 He helium

The Periodic Table of the Elements

Mark Scheme

Q1.

Question Correct Answer Number		Mark
3 	D	1

Q2.

Question Number	Correct Answer	Reject	Mark
	D		1

Q3.

Question Number	Acceptable Answers	Additional Guidance	Mark
	• 80.8(%)	Example of calculation:	(1)
		%=[252 ÷ (252 + 60)] x 100 = 80.769(%)	
		Ignore sf except one	
		Do not award 80.7(%)	

Q4.

Question Number	Acceptable Answers	Additional Guidance	Mark
(a)	 An answer that makes reference to any two of the following: no electrons are found within the nucleus (1) 	Answers can be given in either order. Check for answers alongside the written text if not given on the lines provided.	(2)
	 the isotopes of chlorine have 18 and 20 neutrons not electrons (1) 	Allow chlorine only has 17 electrons/ chlorine doesn't have 35/37 electrons Allow isotopes have different number of neutrons not electrons Allow isotopes have same number of electrons	
19 91	 electrons are not in rings around the nucleus but in orbitals (1) 	Allow regions / energy levels / shells / sub shells	2

Question Number	Answer	
(b)	C (six protons, seven neutrons and five electrons)	(1)

Q5.

Question Number	Acceptable Answer	Additional Guidance	Mark
(a)	 (1s²2s²) 2p⁶ 3s²3p⁴ 	Allow numbers written as subscripts; 2p ² ₂ 2p ² ₇ 2p ² ₂ ; 3p ² ₂ 3p ¹ ₂ 3p ¹ ₂	1

Question number	Acceptable Answer	Additional Guidance	Mark
(b)(i)	 two Na⁺ with empty outer shell, or 8e representing second shell (1) S²⁻ with 6 crosses and 2 dots (or vv)	$2 \left[N_{a} \right]^{+} \left(\begin{array}{c} x \\ x \\ x \\ x \end{array} \right)^{2^{-}}$ Allow all dots or all crosses Allow [Na]^{+} + [Na]^{+} Do not award [Na]_{2}^{+} Allow for one mark, correct dot and cross diagrams (with two sodiums) and charges missing	2

Question Number	Answer	Additional Guidance	Mark
(b)(ii)	C (It conducts when liquid but not when solid)		1

Question Number	Acceptable Answer	Additional Guidance	Mark
(b)(iii)	 An answer that makes reference to the following points: attractive force between sodium ion and anion is greater with sulfide (1) (because) the sulfide ion has a higher charge than the chloride ion/has charge 2- while chloride is 1-(1) 		2

Question Number	Correct Answer	Reject	Mark
(a)	С		1
	· · · · · · · · · · · · · · · · · · ·		•

Question Number	Correct Answer	Reject	Mark
(b)	В	2	1

Q7.

Question Number	Acceptable Answers	Additional Guidance	Mark
(a)(i)	calculation of moles of magnesium	Example of calculation: $(n= 0.04 \div 24.3 =)$ 0.001646 (mol) Allow $0.04 \div 24 = 0.001667$ (mol) Ignore significant figures	(1)
		except 1	

Question Number	Acceptable Answers	Additional Guidance	Mark
(a)(ii)	 calculation of moles of hydrogen 	Answer to (a)(i)	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
(a)(iii)		Example of calculation:	(4)
	 temperature changed to Kelvin (1) 	24°C = 297 K	
	 rearrangement of equation so V=nRT ÷ p and substituting the numbers (1) 	V= <u>0.001646 x 8.31 x 297</u> 101000	
	 calculation of V in m³ / dm³ (1) 	= 4.022 x 10 ⁻⁵ (m ³)	
	 answer converted in cm³ and to a whole number (1) 	= 4.022 x 10 ⁻⁵ x 10 ⁶ = 40 cm ³	

Question Number	Acceptable Answers	Additional Guidance	Mark
(b)	An answer that making reference to any of the following:	Allow To improve reliability/ reproducibility	(1)
	 To identify anomalies and discard To identify random errors and discard Identify precise results and use them Identify imprecise results and discard 	Ignore reference to confidence in the results Ignore 'make results more precise'	
	discard them	"to improve accuracy"	

Question Number	Acceptable Answers	Additional Guidance	Mark
(c)	An answer that makes reference to three of the following linked pairs: • issue: hydrogen escapes from the apparatus (1) • improvement: use a sealed apparatus with a gas syringe /use a conical flask / bung with a gas syringe (1)	Maximum three marks for issues identified Maximum three marks for improvement identified which must be linked with associated issue identified or near-miss	(6)
	 issue: magnesium ribbon covered with oxide (1) improvement: clean with abrasive before weighing	Do not award impurities in magnesium	
	 issue: mass of magnesium may be less than 0.04 g (i.e. as low as 0.035 g) or mass of magnesium required is too small to be measured accurately by the balance available improvement: use more precise balance/ use larger mass (so percentage error is less) issue: large measuring cylinder cannot measure volume accurately (as the graduations are too far apart) 	Allow measurement uncertainty for measurement accuracy	

0	(1) • improvement: use a smaller measuring cylinder/burette/ conical flask / bung with a gas syringe (1)	If more than three issues are given, then maximum 4 marks if incorrect chemistry is stated e.g. reference to 'not all the magnesium
		Ignore reference to: The solubility of hydrogen gas Changes in temperature Changes in acid concentration Air already in the apparatus

Question Number	Acceptable Answers	Reject	Mark
(a)	(Contains) only (C—C) single bonds/ only σ bond(s)		2
	OR (Contains) no (C=C) double bond(s)/no triple bond(s)		
	OR Cannot undergo addition (reactions)		
	ALLOW Has maximum number of hydrogen atoms / has maximum amount of hydrogen /can form no more bonds / no pi-bonds.		
	IGNORE references to alkanes (1)		
	(Compound of) carbon and hydrogen ONLY/ENTIRELY/PURELY (1)	"Mixture of carbon and hydrogen only"	

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	Measure mass (of cylinder) before and after (burning)	~	1

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	Energy transferred = (100 x 4.18 x 27.1 =) 11327.8 (J) / 11.328 kJ Ignore SF except 1 SF	0	1

Question Number	Acceptable Answers	Reje	ect	Mark
(b)(iii)	Mol propane = 0.33/ 44 = 0.0075	(1)		3
	$\Delta H_{\rm c} = (-11.3278/0.0075) = (-1510.4)$			
	= -1510 (kJ mol ⁻¹)			
		(1)		
	Sign and 3SF	(1)		
	Allow TE from b(ii)			

Q8.

Question Number	Acceptable Answers	Reject	Mark
(b)(iv)	Incomplete combustion Allow	Evaporation of water	1
	carbon monoxide forms soot forms	Transfer losses Not under standard conditions Not all the fuel burns	
	Ignore references to specific heat capacity of the apparatus or evaporation of propane		

Question Number	Acceptable Answers	Reject	Mark
(c)(i)	$C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$ + 6490 kJ mol ⁻¹		1
	3C (g) + 8H(g) + 10 O (g)		
	Balancing and state symbol required		

Question Number	Acceptable Answers	Reject	Mark
(c)(ii)	Z = (6x C=0 + 8x0-H = 4830 + 3712)		1
0	$= (+)8542 (kJ mol^{-1})$	0	

Question Number	Acceptable Answers	Reject	Mark
(c)(iii)	$\Delta H_{\rm X} = 6490 - 8542 = -2052 (\text{kJ mol}^{-1})$		1
	Allow TE from 21(c)(ii)		

Question Number	Acceptable Answers	Reject	Mark
(c)(iv)	Bond energy calculation based on H ₂ O(g) OR ΔH _c [*] based on H ₂ O(I) Allow Bond energy varies with environment/ mean bond energies do not equal actual bond energies for these reactants Ignore reference to standard conditions		1

Q	9	•
Q	J	•

Question Number	Acceptable Answers		Reject	Mark
(a)	$C_2H_6(g) + 3\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + 3I_2O_2(g)$	H₂O(I)		2
	Formulae and states	(1)		
	Balancing of correct entities	(1)		
			Multiples	

Question Number	Acceptable Answers		Reject	Mark
(b)	Notice the first mark is for the equation a there are 3 separate additional marks for calculation	and Tthe		4
	нн нн			
	11 11			
	H-C-C-H + Cl-Cl → H-C-C-Cl + H-Cl			
	нн нн (1)			
	Check all bonds displayed especially CI-C H-Cl	l and		
	Calculation marks:		Incorrect / no sign and / or incorrect	
	+413 + 243 (1) (-)(346 + 432) (1)		units	
	OR 656 (1) (-) 778 (1)			
	$= -122 \text{ (kJ mol^{-1})}$ (1)			
	Fully correct answer to calculation with working	no (3)		
	Extra 5x413 and 347 may be included or sides, giving 3068 and (-)3190	n both		
	Allow other same values(s) missing from sides	both		
	Bonds breaking	(1)	Incorrect units loses	
	Bonds making	(1)	this mark	
	[Bonds breaking - bonds making] to give correct answer with sign	(1)		

Question Number	Acceptable Answers	Reject	t	Mark
(c)(i)	Initiation (1) Allow homolysis / atomization / homolytic (fission)	Free r substi alone	adical tution	2
	Ignore any reference to free radical substitution	Photo	lysis	
	UV / (sun)light (1)			
	Ignore reference to high temperature			
Question Number	Acceptable Answers	F	Reject	Mark
(c)(ii)	$CH_3CH_2 \bullet + CI-CI \rightarrow CH_3CH_2CI + CI \bullet$			3
	OR			
	$CH_3CH_2 \bullet + CI-CI \rightarrow C_2H_5CI + CI \bullet$			
	Both products correct including dot (1)			
	Two half headed arrows showing homolytic breaking of CI-CI bond	(1)		
	Half headed arrow from radical to pair with a G arrow	CI		
	OR			
	One arrow from chlorine bond clearly to ethyl radical	(1)		

Question Number	Acceptable Answers		Reject	Mark
(c)(iii)	Cl• + Cl• → Cl ₂ •CH ₂ CH ₃ + •CH ₂ CH ₃ → CH ₃ CH ₂ CH ₂ CH ₃ / C ₄	(1) H ₁₀	C4H12	2
		(1)	CH3CH2CH3CH2	
	•CH ₂ CH ₃ + CI• \rightarrow CH ₃ CH ₂ CI	(1)		
	Penalise missing dots once			
	Allow •C ₂ H ₅ for •CH ₂ CH ₃			
	Di and tri substitution steps			

Question Number	Acceptable Answers	Reject	Mark
(d)	$C_2H_6 \rightarrow C_2H_4 + H_2$		1
61	Allow $2C_2H_6 \rightarrow C_2H_4 + 2CH_4$		

Question Number	Acceptable Answers		Reject	Mark
(e)	Any two from:			2
	(It) produces (more) petrol / gasoline / diesel / jet fuel / LPG / liquid petroleum / fuel	gas (1)	Points based on atom economy / renewable fuels alone	
	Short chain alkanes / lighter fractions ar more useful products	e (1)	Easier to transport / store	
	Demand is greater for shorter chain alka / lighter fractions / smaller molecules OF converts surplus of low demand fractions	ines R s		
		(1)	Short chain	
	It produces ethane / short chain alkenes making poly(ethene) / ethane-1,2-diol /	for	alkenes / ethene more	
	ethanoi / plastics / polymers	(1)	userur alone	
	more efficiently	(1)		
	Recycles waste products	(1)	Recycles alone	
	As a source of hydrogen	(1)		
	NB examiners need to look carefully at t vowel in the middle of alkane / alkene / ethane / ethene if not clear do not give	he BOD		

Q10.

Question Number	Acceptable Answers	Reject	Mark
(a)	C_nH_{2n+2} IGNORE 'where n=1, 2, 3 etc' or 'where n is greater than 1'		1
Question	Acceptable Answers	Reject	Mark

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	$C_{10}H_{22} + 10\frac{1}{2}O_2 \rightarrow 10CO + 11H_2O$	21 [0]	1
	ALLOW 21 / 2 O2		
	ALLOW any correct multiples		
	IGNORE state symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	Any statement that makes it clear there is not enough air or oxygen e.g. Limited supply of air / limited supply of oxygen / not enough air / not enough oxygen / lack of oxygen / little amount of oxygen/ small amount of oxygen		1
	IGNORE "it is not completely oxidized"		

Question	Acceptable Answers	Reject	Mark
Number			
(c)	First mark		3
	hand 0 (1)		
	Second mark		
	Two bond pairs between S and left-		
	hand O (1)		
	Third mark		
	Two lone pairs on left-hand O, one		
	lone pair on central S and three lone		
	pairs on right-hand O atom (1)		
	If 2 double bonds between sulfur and		
	each oxygen then the third mark can		
	be given for two lone pairs on both		
	oxygens and one lone pair on		
	central S		
	NOTE		
	ALLOW dots and crosses that have been reversed		
	Lone pair electrons can be shown as separated (rather than having to be paired up) – it is the total number of electrons in each outer shell that matters		
	Stand alone marks		
	If molecule shown as charged then 2		
	max		

Question Number	Acceptable Answers	Reject	Mark
(d)(i)		benzene ring	1

Question Number	Acceptable Answers	Reject	Mark
(d)(ii)	$C_7H_{16} \rightarrow C_7H_{14} + H_2$	Formulae other than molecular formulae	1
	ALLOW C ₆ H ₁₁ CH ₃ IGNORE state symbols, even if incorrect	Any other structural or displayed formulae	

Question Number	Acceptable Answers	Reject	Mark
(d) (iii)	Any ONE of: (a cyclic alkane) has more efficient combustion allows smoother burning increases octane number reduces knocking / less likely to produce pre-ignition is a more efficient fuel burns better / easier to burn /combusts more easily / improves combustion IGNORE (a cyclic alkane): increases the volatility of a fuel "ignites more easily" "is a better fuel" "burns more cleanly" IGNORE (a cyclic alkane) has a lower boiling point mentions of viscosity safer fuel	Less pollution / reduce waste High atom economy Produces useful products / hydrogen Used to make polymers Produces substances in higher demand / more valuable	1

Question Number	Acceptable Answers	Reject	Mark
(e)(i)	2,2-dimethylpent ane IGNORE missing hyphen/missing comma	2-dimethylpentane	1

Question Number	Acceptable Answers	Reject	Mark
(e)(ii)	\sim		2
	(1)	
	\sim		
	(1)	
	IGNORE names even if incorrect		
	IGNORE different length bonds		
3	IGNORE direction of methyl groups		

Question Number	Acceptable Answers	Reject	Mark
(f)(i)	U.V. / U.V.light / light / sunlight	au	1
	ALLOW high temperature	heat alone	

Question Number	Acceptable Answers	Reject	Mark
(f)(ii)	$Cl_2 \rightarrow Cl \cdot + Cl \cdot /$ $Cl_2 \rightarrow 2Cl \cdot$ IGNORE any curly arrows, even if incorrect IGNORE C ₄ H ₁₀ given on both sides		1

Question Number	Acceptable Answers	Reject	Mark
(f)(iii)	Homolytic (fission)	Photolysis (fission) / free radical (fission)	1
	IGNORE any formulae and arrows		
Question Number	Acceptable Answers	Reject	Mark
(f)(iv)	(First propagation step)	Ann mar time in a bin	2
	$C_4H_{10} + CI \cdot \rightarrow C_4H_9 \cdot + HCl$ (1)	Hydrogen radicals scores	
	(Second propagation step)	zero	
	C_4H_9 + $CI_2 \rightarrow C_4H_9CI$ + CI (1)	Reverse of first reaction	
	Formulae can be displayed		
	'dots' can be anywhere on free radical but no dots at all scores zero		
	ALLOW in either order		
	Incorrect alkane / halogenoalkane but two correct propagation steps scores 1 out of 2		

Question Number	Acceptable Answers	Reject	Mark
(f)(v)	Any ONE of:		1
	C_4H_9 + CI $\rightarrow C_4H_9CI$		
	OR		
	$CI \cdot + CI \cdot \rightarrow CI_2$		
	OR		
	C_4H_9 + C_4H_9 $\rightarrow C_8H_{18}$		

Q11.

Question Number	Acceptable Answers	Reject	Mark
(a)	$H = CH_{3}$ $H = CH_{3}$ $H = CH_{3}$ H_{2} $H = CH_{3}$ H_{2} H_{2} H_{3} H_{2} H_{3} H_{4}		4
	$ \begin{array}{c c} H & CH_3 \\ H & -C \\ H & -C \\ H & -C \\ Br & H \end{array} $ + $ \begin{array}{c c} H & CH_3 \\ H & -C \\ H & -C \\ H & -C \\ H & Br \end{array} $ + $ \begin{array}{c c} H & CH_3 \\ H & -C \\ H & -C \\ H & Br \end{array} $		
	 (1) for each correct product ALLOW correct displayed / skeletal / semi-skeletal / structural / semi-structural formula in each case ALLOW any order of symbols after or before each carbon 		
	ALLOW brackets or no brackets around Br/ CH ₃ for example CH ₂ BrCH ₃ CBrCH ₃		

Question	Acceptable Answers	Reject	Mark
(b)	$H_{3}C H H_{3}C H H$		3
	$\begin{pmatrix} H_{3}C & H \\ H_{3}C & -C \\ H_{3}C & -C \\ Br & Br \end{pmatrix}$		
	First mark Double-headed arrow from alkene must start from somewhere on C=C bond Partial charge on Br ₂ molecule must be correct if	Single-headed arrow	
	shown Second mark is for either correct primary or secondary carbocation and is a standalone mark		
	Third mark Double-headed arrow from bromide ion can start from the minus sign, a lone pair on Br ⁻ , or from the Br and can go to the C or the + sign on the intermediate	Bromine / bromide free radicals	
	The negative charge must be present on the bromide ion The final product, if shown, must be correct to gain third mark	Single-headed arrow (Penalise again)	
	Mechanisms with other electrophiles (e.g. HBr, BrOH) can score 2 nd and 3 rd marks		

Question Number	Acceptable Answers	Reject	Mark
(c)	First mark is for calculating the theoretical maximum mass of ethene from 9.2 g ethanol:-	(0) for <u>4.2</u> x 100% 9.2	2
	(46 g C_2H_5OH gives 28 g C_2H_4 so 9.2 g C_2H_5OH gives maximum mass of) 5.6 g C_2H_4 (1)		
	Second mark is for calculating the percentage yield from candidate's theoretical maximum mass:-		
	(4.2/5.6 x 100% =) 75 (%) IGNORE s.f. except 1 s.f.		
	OR		
	First mark Amount of ethene = $4.2/28 = 0.15$ (mol) and amount of ethanol = $9.2/46 = 0.20$ (mol) (1)		
	Second mark		
	% yield = 0.15/0.20 = 75 % (1)		
	NOTE Correct answer with no working scores (2)		
	% yield TE on candidate's theoretical mass / moles only if % yield <100%		
	If molar masses are reversed, award one mark for 27.8%		